monad.ui.target_function.has_incomplete_training_window
monad.ui.target_function.has_incomplete_training_windowmonad.ui.target_function.has_incomplete_training_window(ctx, required_days)
Checks if the training window is too short for target computation.
from monad.ui.target_function import has_incomplete_training_window
def target_fn(history: Events, future: Events, attribites: Attributes, ctx: Dict) -> np.ndarray:
# trim the future to the desired target window
target_window_days = 21
if has_incomplete_training_window(ctx, target_window_days):
return None
...
| Parameters |
|---|
ctx : Dict
Context dictionary containing mode and timestamp information. Typically, you should pass the ctx object from the target function’s input.
required_days : int
Number of days required for prediction window.
| Returns |
|---|
bool, true if training window is shorter than required days, false otherwise.
Always returns False for non-training modes.
