class ui.module.RegressionTask
ui.module.RegressionTaskDefines regression task.
Properties
RegressionTask.num_targets
RegressionTask.num_targetsNumber of numercial targets to predict.
| Returns |
|---|
int
RegressionTask.max_value
RegressionTask.max_valueUpper bound for the values predicted by the model.
| Returns |
|---|
float
RegressionTask.metric_to_monitor
RegressionTask.metric_to_monitorName of the default metric to monitor during validation.
| Returns |
|---|
str
RegressionTask.metric_monitoring_mode
RegressionTask.metric_monitoring_modeWhether to store values for maximum or minimum metric value.
| Returns |
|---|
RegressionTask.loss_function
RegressionTask.loss_functionThe default loss function to use for training.
| Returns |
|---|
Methods
MulticlassClassificationTask.__init__(self, num_targets, max_value)
MulticlassClassificationTask.__init__(self, num_targets, max_value)from monad.ui.module import MultilabelClassificationTask
TARGET_NAMES = ["The North Face", "Adidas", "Tommy Hilfiger", "Hugo", "Lacoste", "Gap"]
task = MultilabelClassificationTask(class_names=TARGET_NAMES)| Parameters |
|---|
num_targets: int
Number of numercial targets to predict.
max_value: float
Upper bound for the values predicted by the model.
